Succession of ectomycorrhizae in diffirent age larch (*Larix Siberica*) forests in East Iceland Brynja Hrafnkelsdóttir

Supervisors: Bjarni D. Sigurðsson and Edda S. Oddsdóttir

Background

- Since human settlement, in 874, forest cover in Iceland has been reduced from 25% to 1,3%
- Afforestation in Iceland has increased in last decades
- Many exotic tree species
 - ✓ Larch (larix siberica)
- In the project ICEWOODS (SKÓGVIST), changes on species composition and soil nutrients during afforestation, were studied
- Lack of knowledge of soil microflora, for example ectomycorrhizae
- The objectives of this study are to examine long time effects of afforestation on ectomycorrhizae communities in larch forest soils

Mycorrhizae

Sugar

Minerals and

water

Symbiosis between plants and fungi

interdependent; each gain benefits from the other stress of the stress of

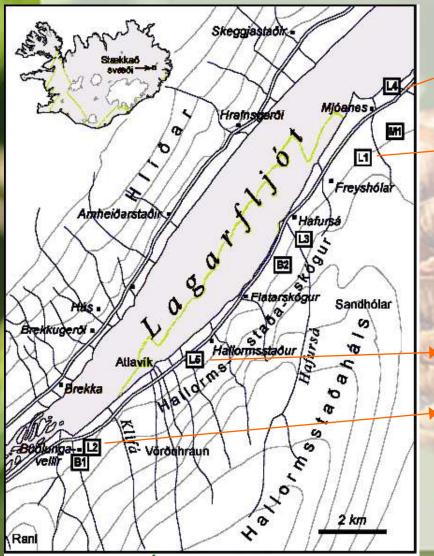
Ectomycorrhizae is very important for many tree species

- Boreal and temporal regions
- Young trees

Ectomycorrhizae gathers water and nutrients for the tree. In exchange, it gets fixed carbon from the tree.

 http://www.botanicalgarden.ubc.ca/potd/2010/03/mycorrhizal _networks.php

Questions



- Are there some ectomycorrhizal fungal partners for larch in treeless heathlands soils?
- Do young larch plants find ectomicorrhizal partners if they are planted birch forest soils?
- Are microcosms a good method to study ectomycorrhizal community?
- Is there a different ectomycorrhizal abundance with different age larch forests and if so can it be explained with some soil factors, for example nutrients?

- 1. Microcosms
- Soil samples taken in East Iceland 2005
 - Birch forest (21-year-old)
 - Larch forest (13, 21, 40 and 53-year-old)
 - Heath land

Locatior

L1: 13 year

vear

L5: 53-year-old larchforest

L2: 21-year-old larchforest

Map: Lovísa Ásbjörnsdóttir

Study sites: Heath land and birch

Kort: Lovísa Ásbjörnsdóttir

L4: 40-year-old larch stand

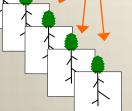
M1: Heath land

1.13-year-old larch stand

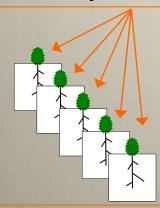
L5: 53-year-old larch stand

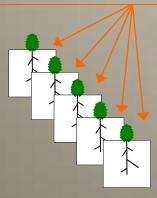
B1: 21 years

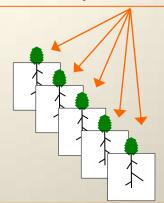
- 1. Microcosms
- Soil samples taken in East Iceland 2005
 - Birch forest (21-year-old)
 - Larch forest (13, 21, 40 and 53-year-old)
 - Heath land
- Larch seedlings grown from surface sterilized seeds

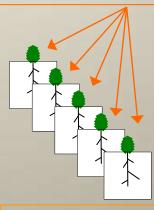


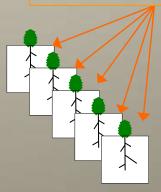
- 1. Microcosms
- Soil samples taken in East Iceland 2005
 - Birch forest (21-year-old)
 - Larch forest (13, 21, 40 and 53-year-old)
 - Heath land
- Larch seedlings grown from surface sterilized seeds
- Flat microcosms prepared




Soil from 13-year-old larch stand

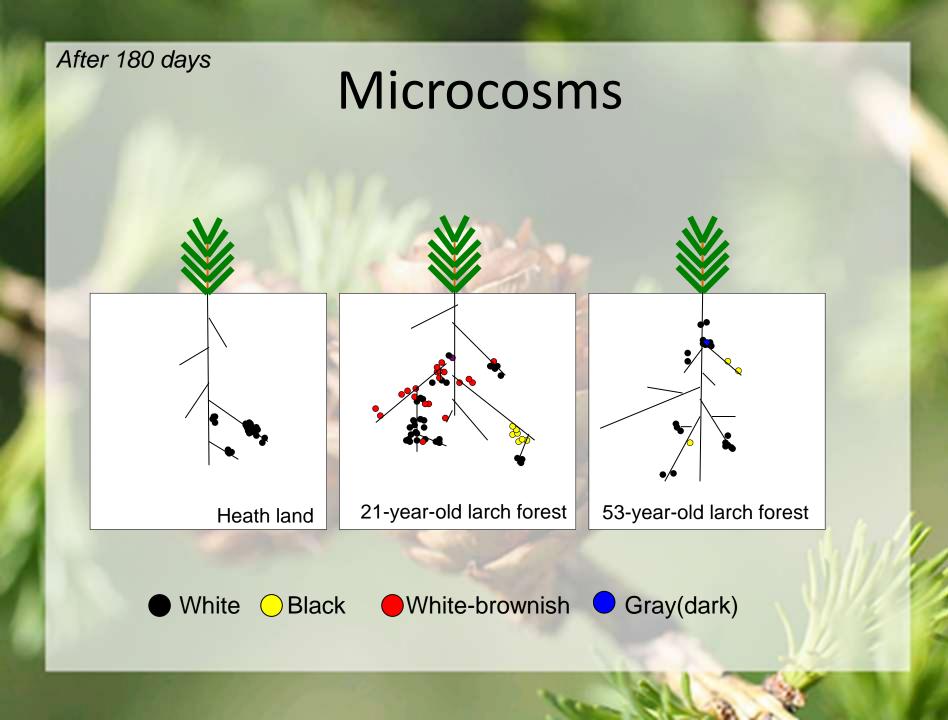

Soil from 40-year-old larch stand


Soil from 21 -year-old birch stand


Soil from 21 -year-old larch stand

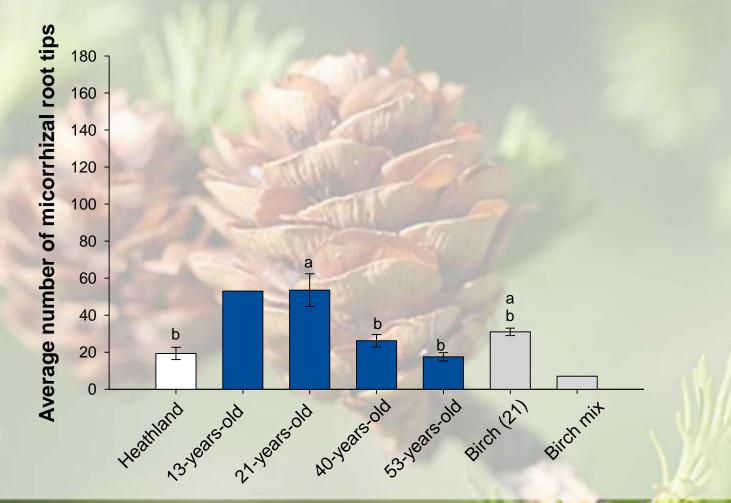
Soil from 53-year-old larch stand

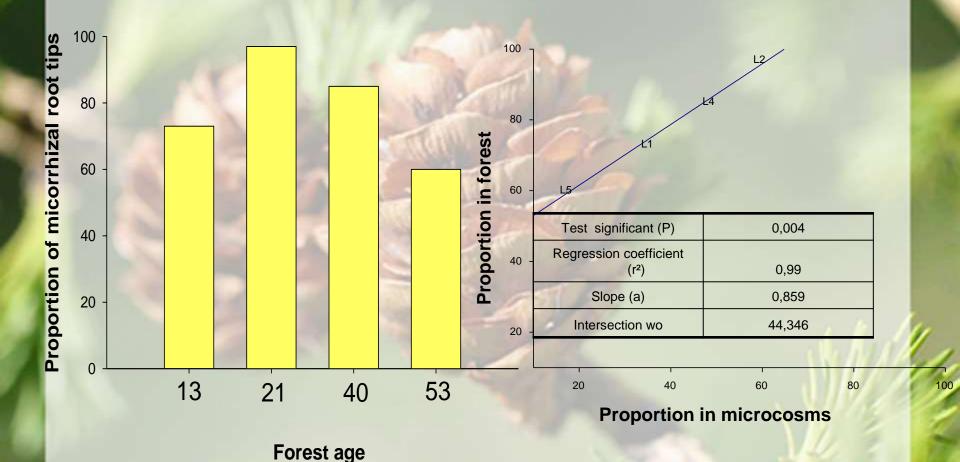
Soil from heath land


1. Microcosms

- Soil samples taken in East Iceland 2005
 - Birch forest (21-year-old)
 - Larch forest (13, 21, 40 and 53-year-old)
 - Heath land
- Larch seedlings grown from surface sterilized seeds
- Flat microcosms prepared
- Mycorrhizal colonization monitorid over six months period
 - Density
 - Diversity (morphological)

Micorrhizal colonization monitored


- 1. Microcosms
- 2. Roots collected from forest
 - Soil samples taken from the same four Larch forests (13, 21, 40 and 53-years-old)


- 1. Microcosms
- 2. Roots collected from forest
 - Soil samples taken from the same four Larch forests (13, 21, 40 and 53-years-old)
 - Tree roots washed, sorted (morphological) and abundance of ectomycorrhiza estimated

Microcosms

Average number of ectomycorrhizal root tips

Field study Propartion of ectomycorrhizal root tips

The relation between abundance of mycorrhiza and soil nutrients

- No relation was found between amount of carbon in soil and abundance of mycorrhiza
- Positive relation was found between soil acidy (pH) and abundance of mycorrhiza
- Negative relation was found between amount of nitrogen and phosphorus in topsoil and abundance of mocorrhiza on larch

Summary

- Ectomycorrhizal diversity and abundance changed greatly with forest age
 - Lack of older stage micorrhiza?
 - Older trees don't have as much use for micorrhiza?
- The abundance of mycorrhiza was strongly related to amount of:
 - Nitrogen and phosphorus in the topsoil
 - Soil acidity (pH)
- Ectomycorrhizal abundance was significantly reduced when grown in soil from treeless heath land compared to forest soils
 - Need for ecotomicorrhizal infection

Summary

- Equal ectomycorrhizal abundance was found on larch planted in soils from larch forest and the same age-class of birch forest
- The microcosm was shown to give a good relative estimate of mycorrhizal abundance at different study sites
 - Underestimation in older forests
 - Not good for estimating diversity

Thanks

Bjarni Diðrik Sigurðsson

Edda Sigurdís Oddsdóttir

Iceland Forest Service

The Agricultural University of Iceland

Rannis - The Icelandic Centre for Research

